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MAP595 - Mathématiques financières
Daniel Sbeiti

RESEARCH INTERNSHIP REPORT

EDF Lab Asia Pacific - Singapore

Pricing of 24/7 Carbon Free Energy Contracts



Abstract

In the light of increasing government carbon regulations and green investment cul-
ture, companies like Google have set ambitious targets to achieve 24/7 Carbon Free
Energy (CFE) within the next decade, necessitating precise and efficient matching
of energy demand with renewable sources on an hourly basis. The Lab’s mission is
to address this demand-supply gap through its 24/7 CFE contract.

This study’s primary objective is to develop a pricing model for these contracts,
minimizing the investment costs required to ensure optimal management of renew-
able energy production and storage assets covering a contracted share of demand.
The research focuses on resolving a non-linear stochastic optimization problem with
storage control. Yet the complexity of the model requires developing numerical ap-
proaches. The implemented method is quite new in this field, as it combines deep
learning neural network with optimal control.

Future work involves scaling the pricing algorithm to cover a full year, refining its
complexity and precision, and potentially developing a fully operational model for
commercial use by EDF. This project not only highlights the practical application
of deep learning in market analysis and pricing, but also aligns with the evolving
landscape of quantitative finance, where machine learning methods are increasingly
employed to create innovative profit strategies.
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1 Introduction

1.1 Introduction to EDF Lab R&D Singapore

The EDF Lab in Singapore is a Research and Development center operating in all
Pacific Asia under the Electricité de France group (EDF). The group is globally
known for its low carbon energy initiatives, and the Singapore Lab focuses primar-
ily on developing sustainable energy technologies in Pacific Asia. The Lab often
partners with top universities, experts or research institutions in common projects
to accelerate the adoption of sustainable energy practices.

1.2 Market Context of 24/7 Carbon Free Energy (CFE)

Government regulations and policies

Governments across the globe are increasingly stating the importance of transition-
ing to CFE in a common drive against climate change. Policies and regulatory
frameworks on companies’ green supply coverage are therefore being implemented.
On one hand, carbon pricing mechanisms like carbon taxes push companies to re-
duce their carbon emissions benefiting green energy resources. On another hand,
government subsidies and tax credits encourage the development and adoption of
green energy technologies. This context leads to the development of smart grids and
energy storage to facilitate the adoption of renewable energies.

Raising commitments from corporations

As a consequence, major companies are making significant commitments to 24/7
CFE to meet raising sustainability goals and green investment expectations of stake-
holders. For example, Google and Microsoft have announced 24/7 CFE by 2030,
Amazon by 2025. These companies thus aim at covering all their energy demand
with renewable sources on an hourly matching.
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1.3 The Lab’s mission:

The Lab’s 27/7 project aims to bridge the gap between this described Renewable
Energy demand from companies and an Renewable Energy supply. This service
operates as a ”24-7 Carbon Free Energy” (CFE) contract sold by EDF, and signed
for a year between:

• One or several consumers who wish to cover a share ρ ∈ [0, 1] of their live
energy demand with Renewable Energies on an hourly matching. We will
call ρ the CFE score. Consumers can be mainly corporations seeking to meet
sustainability goals, especially in the light of the increasing regulations on
sustainability reporting and sustainable investment.

• A 24-7 service provider who contracts with consumers to meet their Renewable
Energy demand. The provider must match or exceed the contracted demand,
while minimizing its supply costs, by optimally managing Renewable Energy
(RE) loads from:

– owned RE production assets or contracting with RE producers.

– owned energy storage assets or contracting with energy storage operators.

The objective of the internship is to price these contracts for EDF to be
able to commercialize it to its clients. The contract price of $/MWh is deduced from
marginal pricing, based on the optimal investment cost level. The optimized invest-
ment cost level should allow enough green resources to cover the agreed share of
demand (the CFE score). These investment costs account for both energy produc-
tion plants (solar panels, wind farms. . .) and batteries acquisition (we will neglect
operational costs.

5



2 Problem formulation and Modelling

2.1 The model

We first decided to model the market through three key processes:

• An electrical demand (Dt)t∈[0,T ]

• A green production (Rt)t∈[0,T ]

• A battery storage profile (ut)t∈[0,T ]

Each battery has an injection/withdrawal rate of 1MW per hour, for a capacity of
n hours. u describes the injection (u > 0) or withdrawal (u < 0) of electricity in the
batteries at each time step.

Whereas (Dt)t ix an exogenous process that the producer can’t control to achieve the
contract, the producer can work on the production and storage in order to achieve
an agreed coverage of the demand in green energy. Let’s further define two variables:

• Q the average level of production on a period T

• X̄ the number of batteries we are working with

The producer’s investment cost would depend directly on the choice of Q and X̄,
which hold a double condition: they must be high enough to allow enough pro-
duction and storage to satisfy the green demand, but not too high as it is directly
impacting the producer’s cost. Since we define the price of the contract as the in-
vestment cost for the producer to satisfy it, We must determine the optimal cost
of satisfying the green demand. We therefore optimize on Q and X̄, which is an
optimization problem under constraint:

Cost = inf
Q,X̄

f(Q, X̄)

E
[
g(ρ, (Dt)t)

]
≤ sup

u
E
[
h((Rt)t, (ut)t, (Dt)t)

]
∀t ∈ [0, T ] ut ∈ [U I

t , U
W
t ]

∀t ∈ [0, T ] dXt = −utdt, Xt ∈ [0, nX̄]

(1)

(2)

(3)

(4)

6



Remarks and model analysis

• Equation 1 is the cost function of the optimization problem. f is the invest-
ment cost to achieve an average production level of Q MW and operate X̄
batteries.

• Equation 2 is the main constraint that the parameters have to respect. It
is called the ”green constraint”. The left term represents the overall green
demand, as a percentage ρ of the total demand D. The right term represents
the green offer, combining production R and storage u.
Function h also takes demandD as an argument, this accounts for the fact that
at each time step t, excess green production after covering the step’s demand
can’t be used to cover demand at future time steps. This ”non green washing
condition” makes the constraint function h non-linear which adds complexity
to the problem.

• Equation 3 is the constraint on the control (ut)t that we need to generate.
Batteries have time dependant bounds on injection (I) and withdrawal (W ).
We have UW,I

t = U
(
Rt, Dt, X̄, (uk)k∈[0,t]

)
.

– Injection quantity is limited by excess production, battery availability
and hourly injection rate.

– Withdrawal quantity is limited by unmet demand, stored energy avail-
ability and hourly withdrawal rate.

• Equation 4 is the dynamic of the battery level (Xt)t as an accumulation of
injections given timely withdrawals. It will help assert battery storage or
stored energy availability for injection and withdrawal.

2.2 The processes

To model demand and production, we chose to generate Ornstein-Uhlenbeck pro-
cesses, with α an efficiency rate (usually 0.7) and Q the average level of production:

dRt = κr(αQ−Rt)dt+ σrdWt

dD̃t = −κD̃tdt+ σddBt

Dt = D̃t + fD
t

(5)

(6)

(7)

The parameters for production have been calibrated on wind farm production data.
The demand process is calibrated on the French 2013 historical consumption data.
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We generate the processes using Euler’s formula (and ∆t = 1):

Rt+∆t = Rt + κr(αQ−Rt)∆t+ σr

√
∆tZr

t

D̃t+∆t = D̃t − κD̃t∆t+ σd

√
∆tZd

t

Zr
t , Z

d
t ∼ N (0, dt = 1)

(8)

(9)

Here is what we obtain as green production and demand curves over a year, using
a mean parameter Q = 45000 and a monthly reversion rate:

Figure 1: Green production curve over a year period

Figure 2: Electrical demand curve over a year period
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Since out battery injection and withdrawal capacity is dependant on excess produc-
tion or lack of production compared to demand, let’s plot (Rt −Dt)t to analyse the
battery relevancy in a general context:

Figure 3: Excess/lacking production compared to demand on a year period

We can see on Figure 3 that the lacking production typically happens in winter
where demand is very high (beginning and end of period) in France as people will
use heaters in every closed place. Whereas summer period presents an excess pro-
duction compared to demand. Battery storage would allow to store the summer
excess production to help satisfy the higher winter demand and reach the agreed
green demand coverage at lower investment costs, instead of just investing on higher
production level calibrated on winter demand.
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2.3 Previous and Related Work

Literature on contract pricing and market making in this format is quite poor. Pr.
Nizar Touzi initiated this project and internship last year to work on the same
problem without storage in batteries. After exploring some numerical resolution
approaches, they ultimately achieved an analytical resolution of the optimization
problem.

The consideration of a storage profile control to the optimization problem now adds
a whole new level of complexity to it which makes it utterly way too technical to
solve analytically. It is now more interesting and practical to explore numerical
resolution methods.

Yet optimization problems with storage is a well known category of problem and is
still very new and unexplored. The optimization cost function being non-linear, we
can’t use classical optimization algorithms like simplex based methods and have to
explore new creative approaches. Literature on this problem category is very poor,
yet Xavier Warin documented in documents [4] and [5] a numerical approach for
reservoir optimization facing the market. His papers describes the profit strategy
of storing energy in batteries when market price is low and selling when market
price is higher. The resolution method is in that case an optimization problem un-
der storage control very similar to ours, and Xavier Warin decides to solve it using
stochastic gradient descent on neural networks. To fully grasp the described meth-
ods I gathered knowledge on stochastic gradient descent optimization algorithms
in document [3]. It also happens that Xavier Warin is a quantitative researcher at
EDF, we therefore had the chance of working closely under his supervision to adapt
and implement his approach on our task.

The work realized in the precedent internship cannot be directly reused during this
one as the model is now solely different. Yet it can be used as a tool for result anal-
ysis and comparisons for more insightful optimization of the algorithm. Combined
with Xavier Warin’s papers, these two research pieces constitute the pillars of my
work on this project.
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3 Numerical approach

3.1 Reformatting the model

In the numerical approach we implemented, (ut)t is generated through neural net-
works. We decided to use one neural network per time step. We then use gradient
descent optimizers to compute optimal Q, X̄ and the NN parameters generating
(ut)t.

This methods needs us to compute at each epoch a loss function that would account
for both minimizing investment costs, and penalizing unsatisfied green demand. We
will therefore use as loss function our cost function in equation 1, penalized with
the green demand constraint in equation 2, by writing the Lagrangian format of the
constrained optimization problem:

Cost = min
Q,X̄

{
f(Q, X̄)−max

λ≥0

{
λ×

(
sup
u

E
[
s
(
ρ, (Rt)t, (Dt)t, (ut)t

)])−}}
(10)

With s = h− g , for h and g from equation 2.

We only account the penalization inside the loss function if it yields a negative
value, thus the max with 0. Indeed, we do not aim to reward the loss if the condi-
tion is met, we only aim to penalize if it is not met (to respect the direction of the
inequality in 2).

The parameter λ

The λ parameter here measures the importance accorded to fulfilling the demand
constraint in our cost optimization as a ”duty cost”.

The optimization problem operates in two steps. We first fix λ at a high value
(not too high to avoid regularization, but not too low to keep importance on the
constraint). Since f is independent from λ, performing a min-max inversion in equa-
tion 10 allows us to determine the minQ,X̄ . We then solve the final loss for different
values of λ to determine the maxλ≥0 and get the final cost.
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3.2 Neural networks and optimizers

The control intervenes in non-linear expressions, making the optimal control problem
very tricky to solve analytically like it was previously done in the problem without
storage. We therefore propose to solve the problem numerically. The approach is
the same as in the paper on storage management facing the energy market strategy
described in document [4]:

We define T neural network models, one for each time step, that we train to de-
liver the time dependant control profiles (ut)t. At each epoch, the cost function
in equation 10 is used as loss for updating the gradients to calculate Q, X̄, and
the parameters of the neural networks. Equation 10 is minimized through stochas-
tic gradient descent. At the end of the training, we should obtain the optimal Q,X̄
and control profile (ut)t to achieve an empirical CFE score ρ equals to the set target.

Here is below the pseudo-code of the algorithm implemented to solve the first part
of the optimization (i.e with fixed λ):
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Algorithm 1 Stochastic Gradient Descent with ADAM for Optimal Control

1: Initialize: Variables initial values q ← Q0, x̄← X̄0

2: Initialize: Neural networks (NNt)
T
t=0 of parameters (θt)

T
t=0

3: Initialize: ADAM optimizers (adamθt)Tt=0 for NN parameters
4: Initialize: ADAM optimizers adamq, adamx̄ for Q and X̄
5:

6: for i = 0, . . . ,Mepoch do
7: L← f(x̄) + g(q) (initial loss)
8: X ← 0 (initial reservoir)
9: R← αq, D ← 0 (initial values)
10:

11: for t = 0, . . . , T do
12:

13: Forecast production and demand:
14: Generate Zr, Zd ∼ N (0, 1)

15: R← q
(
α + (R− α)e−κdt + σr

√
1−e−2κdt

2κ
Zr

)
16: D ← De−κdt + σd

√
1−e−2κdt

2κ
Zd + fD

t

17:

18: Compute the storage controls:
19: ût ← Generate in [0, 1] using NNt(R,D)
20: UW

t ← U(R,D,X, x̄, q) (energy stored ∧ lacked demand ∧ withdr. cap.)
21: UW

t ← U(R,D,X, x̄, q) (left storage ∧ excess prod. ∧ inject. cap.)
22: ut ← −U I

t + (UW
t + U I

t )ût (value now lies in [−U I
t , U

W
t ])

23:

24: This allows to capture bound conditions in eq. 3 according to doc. [4]
25:

26: Update battery storage state:
27: X ← X − ut

28:

29: Update loss:

30: L← L− λ
(
δg
(
ρ,R,D,X)

)−

31: end for
32:

33: Update q and x with gradients from adamq(L), adamx̄(L)
34: q ← q − ηiq∇i

qL(q, x̄, θ)
35: x̄← x̄− ηix̄∇i

x̄L(q, x̄, θ)
36:

37: Update NN parameters (θt)t with gradients from (adamθt(L))t
38: for t = 0, . . . , T do θt ← θt − ηiθt∇

i
θt
L(q, x̄, θ) end for

39:

40: end for
41: Output: Q = q, X̄ = x̄, and {ut}Tt=0
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3.3 Limits

While trying to implement this model, I stumbled on a couple limitations that I had
to bypass in order to obtain a functioning algorithm.

Processes stochasticity:

Let’s remind that the main goal here is trying to minimize the penalization of not
reaching the objective green coverage percentage ρ in constraint equation 2, by up-
dating the parameters Q through stochastic gradient descent. We then use this new
Q to generate a new production process that we test for constraint 2 until condition
met. When performing a stochastic gradient descent, the norm is usually to gener-
ate only one stochastic process variable per step to simulate the expected value we
are working with.

Yet a single stochastic Ornstein-Uhlenbeck process R of mean level Q can generate
a very high variance of empirical ρ values due to its stochasticity. These values are
used to calculate the penalized constraint, and would sometimes deliver empirical
ρs higher than the objective at early stages (variance superior than distance
to objective). This means that some steps randomly satisfied the constraint just
because of the variance on R’s simulation giving counter intuitive instructions to
the optimization model which couldn’t converge (cf below figure).

Figure 4
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We therefore had to reduce this variance on empirical ρ in order to coherently
compute the penalized constraint and make the model converge. A way to do this is
to batch the code and simulate the expected value as an average of m simulations.
Indeed we have that, for X1, . . . Xm i.i.d:

V
[ 1

m

m∑
i=0

Xi

]
=

1

m
V
[
X1

]
(11)

We now obtain a calculation of empirical ρ with very high precision (std = 0.008
vs 0.14 before) using a batching of size m = 300, and can converge to an optimal
solution precisely.

Lack of excess production:

As precised earlier, the battery relevancy is directly correlated with the presence
of an excess production to be stored. If production is never in excess compared
to the demand, then the battery is never charged and will never be used. Yet the
production level relies on the average production parameter Q, optimized to satisfy
a percentage ρ of total demand.

We have yet observed that if ρ is too low, constraint on production requires a
low Q value which determines production level. Production is then too low to ever
be in excess compared to demand at any time step and the battery is never used.
In that case, we are back with the initial problem of optimization without storage
dealt with in last year’s internship.

To determine after what approximate ρ level batteries become irrelevant, let’s plot
the total excess production compared to demand as function of ρ. To obtain this
curve, we first determine Q associated with each ρ using the model without storage
solved analytically last year, and we calculate production using that mean parameter
Q to obtain total average excess production over the given time period.
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Here is the graph obtained:

Figure 5: Excess production compared to demand with ρ

As observed on the above figure, excess production on the overall year period only
starts to appear above ρ constraints of 0.55. When considering only the time range
we are working with (50 time steps), the minimum ρ for batteries becomes 0.75.

Computational price:

One of the biggest bottlenecks to obtaining a good algorithm was the computational
cost of training. We were calling our neural networks 70000 epochs × 300 batches
× 8760 time steps. These add up to more than a hundred billion iterations for one
run (i.e a couple days). We needed to get that duration down in order to fine-tune it.

A first solution is to first operate on a limited number of time steps like 50, and
then use splitting methods to scale it up to the whole period.

Another technique used was to kickstart the algorithm with a high learning rate
on early epochs allowing big initial steps in the optimization. Then slowly get the
learning down as we progress to end up with a precise evaluation. The function used
for the learning rate comes from document [2] and is called ’linear cosine decay’, I
discovered it watching the algorithm time optimization video [1].
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Here is below the decayed learning rate used in the algorithm:

Figure 6: Linear Cosine Decay for optimizer learning rate

These among other techniques helped us get the code down to operating in around
2 hours allowing us to run it multiple times in a day and fine-tune it using results
analysis.
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4 Results

4.1 Presenting the optimized solutions

After adjusting all hyper-parameters, we obtained a converging algorithm after for
50 time steps that we will need to scale up to t ∈ [0, T ]. In order to visualize its
results, I decided to plot 9 relevant graphs:

Plots with regards to time to visualize the final behaviors of our sys-
tem after optimization:

• Final demand (Dt)t and green offer to grasp that the green constraint is verified
(covering the agreed CFE score)

• Excess production (Rt −Dt)t to analyse battery relevancy

• Reservoir level (Xt)t to visualize battery usage

• Optimized storage profile control (ut)t to complement precedent analysis

Plots with regards to training epochs to visualize the evolution and con-
vergence of our model:

• Evolution of our optimized variables Q and X̄ to monitor their convergence
and final values

• Evolution of the empirical share of demand covered with green offer given the
optimized variables and control (empirical CFE score rho)

• Gradients of Q and X̄ ADAM optimizers to detect when reaching optimal
value

• Loss/ Cost function to make sure it is diminishing with training and get the
final value which is the contract price

18



Here are the plots for as hyper-parameters an objective CFE score of ρ = 0.9,
λ = 100000, a batch size of 300, M = 70000 epochs and the learning rate profile
explicited in Figure 6. For confidentiality purposes, I normalized the loss values (as
they give out information on possible contract prices) and removed the value range
on Q and X̄ keeping only the numberless evolution with epochs.

Figure 7: Analysis plots for ρ = 0.9 of the algorithm’s results
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Observations and remarks:

We can conjecture on the first plot that green offer accounts on average for around
ρ = 90% of demand. At some time steps, green offer is higher than production which
means there is an additional energy storage playing a role. A good thing to observe
is that at all time steps, green offer never exceeds demand meaning there is no
”greenwashing” as precedently warned against. Consequently, every green produc-
tion at t is either used to fulfill a demand at t or stored, but never reused afterwards.

The following three plots, namely the excess production, battery level and battery
storage profile confirm the use of batteries to supplement green energy production in
fulfilling constraint 2, and its correlation with excess production. We can notice that
battery injection and withdrawal always remain within injection and withdrawal rate
X̄ × 1MWh (for X̄ batteries of rate 1MWh).

On another hand, fourth and fifth graph shows us how Q and X̄ indeed converge
towards optimal values. Coherently, empirical ρ converges towards its target despite
some stochasticity. Let’s remind that we tried to counter stochasticity as much as
computationally practical through high batch size, thus diminishing ρ’s standard
deviation for a fixed value of Q.

The last two graphs show us how once empirical ρ starts reaching the objective,
the gradients start reacting. Indeed loss function only takes the penalized con-
straint if it is negative (constraint unmet), but doesn’t reward meeting it. When
constraint is met, loss becomes the core investment sole function f(Q, X̄) as defined
in equation 1. The ultimate loss value is the price of the contract.
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4.2 Choosing λ

Now that we have got a converging algorithm, we need to determine which value
to choose for λ. As a reminder, the λ value determines the weight or importance
attributed to meeting the green constraint and appears when transforming the op-
timal control problem into its Lagrangian form. If the value chosen is too low, the
constraint might be looked over and ρ would never reach the target. If it is too high,
we risk regularization and underfitting/ suboptimal solutions.

To choose λ, we simply determine which value gives us a maximal final loss while
having ρ reach the target (since it is a maxλ≥0). In this case the contract is fulfilled
and established at optimal price. The order range of f in equation 1 is around 108,
and the penalized constraint starts around 103 before being multiplied by λ. We
decided accordingly run the algorithm for λ ∈ [102, 103, 104, 105, 106, 107, 108]. If the
algorithm doesn’t converge (green constraint unmet), normalized loss will be set at
0. For confidentiality purposes, loss values are normalized through softmax function:

Figure 8: Loss w.r.t λ as a power of 10

The above curve clearly shows a noticeable maximum value of λ. This λ expresses
the minimum penalization weight for the green constraint to be just taken into
consideration, without regularization. The optimum is approximately at λ = 104,
which will be the value we fixate on for the rest of the study.
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Conclusion

In this work, we were able to set advanced foundations for the numerical resolution
of a complex non-linear stochastic optimization problem with storage control. This
represents a major step in the pricing of 24/7 CFE contracts as the market urgency
grows rapidly because of governmental deadlines and competition with other energy
firms working on the same subject.

For the rest of the internship, the new stakes are now to scale up this pricing
method for it to cover the full year period. Indeed the pricing algorithm only covers
50 time steps and the contracts engage on a yearly green cover. We also will try
to adjust the algorithm both in complexity and preciseness. In the most optimistic
scenario, we will be able to derive a fully scaled pricing algorithm for EDF to use
and commercialize its 24/7 contracts.

As machine and deep learning are currently gaining a lot of interest and use cases in
quantitative finance, I am glad to be working on deep learning in a market analysis
and pricing exercise. This approach is to me highly relevant as quantitative finance
hedge funds nowadays rely on machine and deep learning methods to determine new
and finer profit strategies. It is a way for me to stay in track of the evolution of
quantitative finance with the advancement of AI and build solid ground in this field
for a future career as a quantitative finance researcher.
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